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Entanglement in the F-AF zig-zag Heisenberg chain
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We present a study of the entanglement properties of the F-AF zig-zag Heisenberg chain done by means of the Density
Matrix Renormalization Group method. In particular, we have selected the concurrence as measure of entanglement and
checked its capability to signal the presence of quantum phase transitions within the previously found ergodicity phase
diagram [E. Plekhanov, A. Avella, and F. Mancini, Phys. Rev. B 74, 115120 (2006)]. By analyzing the behavior of the
concurrence, we have been able not only to determine the position of the transition lines within the phase diagram of the
system, but also to identify a well defined region in the parameter space of the model that shows a complex spin ordering

indicating the presence of a new phase of the system.
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1. Introduction

Can we use any measure of entanglement as a tool to
signal the presence of a quantum phase transition, and
identify its nature, within the phase diagram of a physical
system? Unfortunately, there is still no definitive answer
to this question although more and more results, recently
published in the literature, give clear evidences that this
should be the case [1]. But why do we care about using the
properties of entanglement of a system to this end? The
answer to this question exists, and is much simpler and
immediate: almost any measure of entanglement can be
almost exactly (after a finite-size scaling analysis) and
automatically computed by means of numerical techniques
(Lanczos, quantum Monte Carlo, Density Matrix
Renormalization Group (DMRG)) and depends on a large
number of correlations functions in a non-trivial manner.
According to this, people hope to sketch the phase diagram
of complex physical systems just analyzing the behavior of
a single, easily computable, physical quantity instead of
struggling to figure out which is the correlation function
reporting the signature of a specific transition. On the
other hand, the versatility of entanglement measures has a
clear drawback: it is rather difficult to deeply comprehend
the nature of a transition just looking at the behavior of
such quantities in its proximity. At the end of the day, one
has often to resort to correlation and response functions in
order to classify, both in terms of nature and order, a
transition. Therefore, we can just hope to use entanglement
measures as cheap tools to position all transition lines over
the phase diagram. At any rate, this should not be
considered as a little achievement. As a matter of fact,
after such a preliminary analysis, we could focus on few
lines over a phase diagram instead of being forced to study
the whole parameter space. In this manuscript, we have
studied the entanglement properties of the one-
dimensional Heisenberg model with both nearest-neighbor
and next-nearest-neighbor interactions. In particular, we

have chosen a ferromagnetic z-axis nearest-neighbor
interaction and an antiferromagnetic in-plane nearest-
neighbor  interaction.  The  next-nearest-neighbor
interaction is antiferromagnetic and isotropic. The
anisotropy in the nearest-neighbor interaction and the
presence of a next-nearest-neighbor interaction are both
sources of frustration and open the possibility to have a
quite rich phase diagram for this model. This model is
suitable to describe cuprates with edge-sharing CuO2
plaquettes where the bonding angle between two nearest
Coppers and the intermediate Oxygen is slightly larger
than 90° resulting in a ferromagnetic nearest-neighbor
interaction term with an intensity comparable to the
antiferromagnetic next-nearest-neighbor interaction term.
According to this, the analysis of the phase diagram of
such a model is relevant not only on the pure theoretical
level (effects of frustration, incommensurability, spiral
ordering, dimerization), but also on the level of
understanding real materials and their applications.

The manuscript is organized as follows. In the next
section, we present the Hamiltonian under study and give
few details about the numerical framework within which
the model has been solved. In section three, we describe
the entanglement measure we have chosen to compute and
give the reasons behind such a choice. The results of the
analysis are discussed in section four. Finally, we draw
some conclusions and give some perspectives.

2. Model and method

The Hamiltonian under analysis reads as:
i+1

H=-J,>S/S;
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Where J, > 0 is the ferromagnetic z-axis nearest-
neighbor  coupling constant, J, >0 is the

antiferromagnetic inplane nearest-neighbor  coupling
constant and J° > 0 is the antiferromagnetic isotropic next-
nearest-neighbor coupling constant.

We solved the Hamiltonian (1) numerically by means
of the DMRG [2] technique on a chain with 100 sites.
DMRG forced us to use open-boundary conditions. We
have retained up to 200 states per block at every step of
the renormalization procedure. The finite-size effects,
enhanced by the open-boundary conditions, have been
systematically mitigated by taking into account, in the
average procedures, only the central part of the system, i.e.
by neglecting the contributions coming from the sites close
to the edges. It is worth noticing that the region of model-
parameter space we have explored is just inaccessible to
any of the almost exact field theories as no small
parameter can be easily identified. Only a very powerful
numerical technique, such as DMRG, would be capable to
bridge the gap between the few known exact results for
this model and to provide reliable reference data.

3. Concurrence

There exist a few entanglement measures, which
mainly differ in the way the system is split into two blocks
whose entanglement is measured: a reference block, whose
properties (averages and correlation functions) will come
into play, and the rest of the system, which will simply act
as a bath. In spin systems, the one-tangle (i.e., when we
choose as reference system a single spin), or von Neumann
entropy, is a function of the local magnetization only and,
hence, is no more informative than this latter. Then, in
such systems, in order to catch some more physics than
only the one related to the ferromagnetic phase, it is
necessary to use the concurrence[3], or pairwise
entanglement (i.e., the reference system will now be two
spins), which depends on spin-spin correlation functions.
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Fig. 1.Schematic phase diagram of the model (1).See Ref
[5] for a detailed description of the phases

The concurrence for a couple of spins residing at sites
i and j, respectively, is defined as:

Cij=max(0,4, -4, -4, - 4,) )

where {4, } are the eigenvalues, in decreasing order, of a
positively definite matrix R defined as follows:

R=yp(c’ ®c’)p (¢’ ®c")

where %y is just the second Pauli matrix and % is the
reduced density matrix. This latter can be computed by
integrating out, in the ordinary density matrix of the
system, all degrees of freedom except for those of the two
spins under analysis. If one integrates out the degrees of
freedom of the bath analytically, the reduced density
matrix of two spins reads as:

1+KZ+2m' 0 0 0
0 1-K®  2K™ 0 “)
it o K™ 1-KE 0
0 0 0 1+Ky+2m’

Where Ki* = 4(S7S7) K™ = 4(S'S}) an
m* =2(S7)

I

We have assumed that there is no anisotropy in the x j
y plane. The extreme values of the concurrence, zero and
one, indicate that the system is either a product state or a
maximally entangled one, respectively. Wootters [3]
demonstrated that the concurrence can be directly related
to the entropy of formation for two spins 1/2 both for pure
and mixed states.

In order to take into account the contribution to the
entanglement coming from the correlations at all distances,

in this manuscript, we have adopted 7, [4] as the
reference entanglement measure:

T, = /%Ciz,nd )

According to our average procedure (see Sec. 2),
C, ;.. does not depend on i and so does 7.
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Fig. 2. 7, as function of (left) J , / JXand (right) J'/ JX..

4. Results

The starting point of our analysis is the doubly
degenerate, completely polarized state, located within the
phase diagram of the system in the region

J, <J,—J3'<0.31J,as found in Ref [5] (see Figl)
First, we analyze the behavior of 7, across the
transition of the A type (see Fig. 1). At J, >>Jz and

J'=0, the model reduces to the exactly solvable XX
model which shows an in plane antiferromagnetic quasi-
long-range order. We do expect an XX-model-like

behavior all the way down toJ, >Jz [6]. As can be

seen from Fig. 2 (left), 7, successfully detects the
increase of complexity of the ground state trough the A-
type phase transition. At J'=0.3J, a region with non-
zero entanglement is present well below the isotropic line
(0.82J, <J, <1.05J,) and can be interpreted as the
appearance of a third phase between the ferromagnetic and
the XX-model-like ones. For larger values of J', in the
range of J | values explored by us, 7, is finite, but almost

featureless. Entanglement measures other than 7, , such as

measures involving more than two spins in the reference
system, could reveal the presence of other phase

transitions in this region. In particular, entanglement
measures involving four spins should be able to check the

tendency towards dimerization. In A-type transitions, C,
is non zero only for values of d up to 15 lattice spacings.
Then, we examine the features of 7, as J' exceeds

the critical value of approximately 0.31J, for J, < Jz

(transitions of B type on Fig. 1). The increasing frustration
induced by the next-nearest-neighbor term steadily reduces
the ferromagnetic polarization of the spins as the intensity
of the antiferromagnetic correlations between next-nearest
neighbors increases. As a matter of fact, within the region

(0.31J,<J'<0.43,), we have found a finite

magnetization per site together with an increasing next-
nearest-neighbor antiferromagnetic correlation length.
From an entanglement point of view, a completely
polarized ferromagnetic state has zero concurrence since it

is a product state. Therefore, 7, is expected to increase

from zero to a finite value across the transition. Indeed,
such a behavior was already observed in our previous
Lanczos calculations [7] on a 24-site system, but the quite
relevant finite-size effects led to the appearance of steps in

7,(J") that mined our comprehension of the order and

nature of the transition. The current DMRG calculations
on a 100-site system are not affected by such drawbacks. It

can be very clearly seen in Fig. 2 (right) that 7, is quite
sensible with respect to this transition. Up to values of
J,=0.7J,, 7, is almost independent on J, and
presents only a wide peak immediately after the transition.
However, forJ, =0.9J,, this peak evolves into a

pronounced maximum at 0.3J, < J'<0.35J,, which,
together with the above noted analogous increase at
0.82J, <J, <1.05J, and J'=0.3J,, indicates the

presence of a well defined region in the parameter space
that is a good candidate to be recognized as a new ordered
phase of the system. The nature of the ordering ruling such
a phase can be deeply understood only by studying the
spin-spin correlation functions and such a work is
currently in progress. It is worth noting that our present
calculations confirm an earlier observation that the only

non-zero contributions to 7,, for J; <0.9J, in B-type
of transitions, are those coming from second-neighbor
spin-spin correlation functions. For J; =0.9J,, we have
found that also third-neighbor spin-spin correlations
contribute to 7, .

5. Conclusions

We have studied a 100-site anisotropic extended F-AF
Heisenberg chain by means of Density Matrix
Renormalization Group retaining 200 states per block at
every renormalization stage. We have measured the
concurrence at all distances and checked its capability to
detect phase transitions leaving the fully polarized
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ferromagnetic phase of the system on varying the
frustration driven by the anisotropy in the nearest-neighbor
coupling and by the presence of next nearest neighbor
coupling. Although it was not possible to establish neither
the order of the transitions nor the nature of the newly
appearing phases, the behavior of the concurrence clearly
showed their presence. Moreover, by means of the analysis
of concurrence features, we have been able to identify a
well defined region in the parameter space that shows the
signatures of a complex spin ordering. In order to clarify
the nature of this probable new phase, we have just started,
and it is still in progress, the analysis of spin-spin
correlation functions in this region.
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